SaTC: Securing mmWave Communications with Reconfigurable intelligence Surfaces (SECURIS)
Reconfigurable intelligent surfaces (RISs) are designed to dynamically adjust the radio frequency (RF) environment to improve signal quality and coverage. It will be a critical component of the next generation (Next G) millimeter-wave (mmWave) wireless communication. However, RISs can also be conveniently manipulated by an attacker for malicious purposes such as gaining eavesdropping advantages, degrading wireless link quality, or poisoning channel estimation. These attacks will severely impact the availability, integrity, and security of Next G communication systems. Since the attackers can potentially alter the RF propagation environment at physical layer, conventional data encryption or authentication mechanisms at the data layer are not useful. To defeat these attacks, the project will carry out four tightly connected research thrusts at the physical layer: (i) to investigate and create RIS signal watermark embedding and signature appending to enable efficient and robust RIS signal/propagation path authentication, (ii) to localize malicious RISs through collaborative sensing for spectrum enforcement, (iii) to leverage neural network-based beamforming for low-probability-of-intercept and resilient RIS-assisted communication, and (iv) to build a mmWave testbed including the fabrication of a RIS and carry out experimental evaluation.
Find NSF abstract here.